Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes
نویسنده
چکیده
Resonant energetic particles play a major role in determining the stability of toroidal Alfven eigemnodes (TAE’s) by yielding the well-known driving mechanism for the instability and by producing an effective dissipation, which removes the singular character of local oscillations of the shear-Al&n continuum and gives discrete kinetic Alfven waves (KAW’s). Toroidal coupling of two counterpropagating KAW’s generates the kinetic analog of the TAE, the KTAE (kinetic TAE). The nonperturbative character of this phenomenon and of the coupling between TAE and KAW’s, and the relevance of finite drift-orbit effects limit the effectiveness of the analytical approach to asymptotic regimes, which are difficult to compare with realistic situations. A three-dimensional hybrid fluid-particle initial-value code for the numerical simulation of the linear and nonlinear evolution of toroidal modes of the Alfvdn branch has been developed. It is shown that for typical parameters the KTAE is, indeed, more unstable than the TAE.
منابع مشابه
Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode
The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynami...
متن کاملElectromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry
The fluid-kinetic hybrid electron model for global electromagnetic gyrokinetic particle simulations has been formulated in toroidal geometry using magnetic coordinates, providing the capabilities to describe low frequency processes in electromagnetic turbulence with electron dynamics. In the limit of long wavelength and no parallel electric field our equations reduce to the ideal magnetohydrody...
متن کاملGyrokinetic simulation model for kinetic magnetohydrodynamic processes in magnetized plasmas
A nonlinear gyrokinetic simulation model incorporating equilibrium current has been formulated for studying kinetic magnetohydrodynamic processes in magnetized plasmas. This complete formulation enables gyrokinetic simulation of both pressure-gradient-driven and current-driven instabilities as well as their nonlinear interactions in multiscale simulations. The gyrokinetic simulation model recov...
متن کاملSpectral Cascade and Energy Dissipation in Kinetic Alfvén Wave Turbulence
Spectral cascade and energy dissipation of Alfven turbulence is studied using a massively parallel gyrokinetic particle simulation. The simulation observes a magnetic energy spectrum with a power law index of ”-5/3” in the long wavelength, which agrees with magnetohydrodynamic results in the inertial range. In the dissipation range, the simulation finds a spectral break point on the ion gyrorad...
متن کاملHybrid kinetic-MHD simulations in general geometry
The dynamics of fusion plasmas lead to instabilities that can spontaneously erupt and degrade confinement and sometimes lead to catastrophic disruptions of the entire plasma itself. These instabilities occur in a broad range of spatial and temporal scales, spanning many orders of magnitude, often resulting from nonlinear interactions. Computational simulations are crucial to understanding these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999